Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let a=2i^-j^+3k^, b=3i^-5j^+k^ and c be a vector such that a×c=c×b and (a+c)·(b+c)=168. Then the maximum value of |c|2 is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

462

b

308

c

77

d

154

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

a=2i^j^+3k^b=3i^5j^+3k^a×c=c×ba×c+b×c=0(a+b)×c=0c=λ(a+b)c=λ(5i^6j^+4k^)..(1)|c|2=λ2(25+36+16)|c|2=77λ2(a+c)(b+c)=168ab+ac+cb+|c|2=168 14+c(a+b)+77λ2=168
using equation (1)
λ|5i^6j^+4k^|2+77λ2=15477λ+77λ2154=0λ2+λ2=0λ=2,1
 Maximum value of |c|2 occurs when λ = –2
|c|2=77λ2
= 77×4
= 308

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon