Q.

Let A=[aij] be a matrix of order 2 where aij{1,0,1} and adj. A=A. If det. (A)=1, then the number of such matrices is _________.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 12.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

adj.   A=A         Aadj.A=A2=|A|I=I           A2=I

Let  A=[abcd]           A2=[a2+bc(a+d)b(a+d)cd2+bc]=[1001]
On comparing both sides, we get
    a2+bc=1,   (a+b)b=0,   (a+d)c=0,   d2+bc=1
Case I: When  (a+d)0
  b=0=c   and  a=1,d=1  or  a=1,d=1

 A=[1001]     or      [1001]

But both are rejected as det. A=1 (given)
Case II: When  (a+d)=0        bc=0
(i)    If  a=1,  d=1,        d=a
         For  b=0,c can be -1, 0, 1.
         For b=1,c  can be 0 only
         For b=1,c  can be 0 only
         So, 5 matrices are possible.
(ii)    If  a=1,d=1
          bc=0    
         For b=0,  c=1,0,1  only.
         For  b=1,c=0 only.
         For b=1,  c=0 only.
         So, 5 matrices are possible.
(iii)   If  a=0,d=0
          bc=1    
          A=[0110]   or   A=[0110]     
         So, 2 matrices are possible
Therefore, total number of matrices is 12. 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon