Q.

Let A and B be two non-singular matrices such that (AB)k=AkBk for three consecutive positive integral value’s of k.

 Column_I Column_II
A)ABA1P)A2
B)BAB1Q)B
C)AB2A1R)A
D)BA2B1S)B2
  T)AB

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

A-S,B-P,C-Q,D-R

b

A-Q,B-R,C-S,D-P

c

A-R,B-S,C-P,D-Q

d

A-P,B-Q,C-R,D-S

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

As A and B are invertible matrices A1,B1 both exist, Also, for every positive integer, An  andBn are invertible .
Suppose (AB)n=AnBn holds three consecutive positive integer m, m + 1 and m + 2. We have (AB)m=AmBm  ………………..(1)
 (AB)m+1=Am+1Bm+1                           (2)
And  (AB)m+2=Am+2Bm+2                           (3)
From (2), we have
Am+1Bm+1=(AB) m+1=(AB)m(AB) AmABmB=AmBmAB

[using (1)]
Since Am and B are invertible matrices
ABm=BmA…………………(4)
Similarly, using (2) and(3) we can show that
ABm+1=Bm+1A………………………..(5)
We have  (AB)Bm=ABm+1=Bm+1A
[using (5)]
=B(BmA)=B(ABm)=(BA)Bm
[Using (4)]
Thus,  (AB)Bm=(BA)Bm
As Bm is an invertible matrix, we can cancel Bm from both the sides to obtain AB  BAA1BA=B   and  B1AB=A  etc.,

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon