Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let a,b,c are three vectors having magnitudes 1,2,3 respectively satisfy the relation |[abc]|=6 . If  d is a unit vector coplanar with b   and   c   such that b   .   d=1 then the value of   |(a×c)  .  d|2|(a×c)   ×  d|2

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

9

b

3

c

92

d

92

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Let the angle between a  andb is  α  and  a×b  and  cis  β  
|[a,b,c]|=6sinαcosβ=1Sosinα=1,cosβ=1α=900,   β=00 
a,b,c  are mutually perpendicular
again  [bcd]2=0|40109c.d1c.d1|=0 
c.d=±322  we have   a.d=0
|a×c.d|2=  |1000933203321|=9274=94 
 |(a×c).×d|2
 =|(a.d)c(c.d)a|2=|332a|2=274
    |a×c.d|2|(a×c)×d|2       =94274=184=92  

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let a→,b→,c→ are three vectors having magnitudes 1,2,3 respectively satisfy the relation |[a→ b→ c→]|=6 . If  d→ is a unit vector coplanar with b→   and   c→   such that b→   .   d→=1 then the value of   |(a→×c→)  .  d→|2−|(a→×c→)   ×  d→|2