Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let a̲ = α1 î + α2 ĵ + α3 k̂, b̲ = β1 î + β2 ĵ + β3 k̂ and c̲ = γ1 î + γ2 ĵ + γ3 k̂, |a̲| = 22, a̲ makes an angle π3 with the plane of b̲, c̲ and angle between b̲, c̲ is π6 , then α1 α2 α3 β1 β2 β3 γ1 γ2 γ3 n is equal to (n is even natural number)


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

b̲ a̲6n2

b

3 b̲ c̲2n

c

b̲ c̲ 32nn2

d

2 b̲ a̲̲3n 

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given in the question that a̲ = α1 î + α2 ĵ + α3 k̂, b̲ = β1 î + β2 ĵ + β3 k̂ and c̲ = γ1 î + γ2 ĵ + γ3 k̂, |a̲| = 22 , a̲ makes an angle π3 with the plane of b̲, c̲ and angle between b̲, c̲ is π6 where a̲, b̲, c̲ are 3 vectors.
α1 α2 α3 β1 β2 β3 γ1 γ2 γ3 n can be written as a̲ b̲ c̲ n
As we know from the basic concept that a̲ b̲ c̲  = a̲ × b̲ . c̲ a̲ b̲ × c̲
normal of the plane containing b̲, c̲ is b̲ × c̲ .
given that a̲ makes an angle π3  with the plane of b̲ × c̲ .
So a̲ will make an angle π6  with the normal of the plane containing b̲, c̲ that is b̲ × c̲.
As we know that a̲ b̲ = a̲ b̲ cosθ where θ is the angle between the normal of the plane containing of b̲ and a̲.
We also know that a̲ × b̲ = a̲ b̲ sinθ n̂ where θ is the angle between a̲, b̲ and n̂ is the magnitude of the unit vector along the normal which will be equal to 1.
Hence the simplified form of α1 α2 α3 β1 β2 β3 γ1 γ2 γ3 n will be
a̲ b̲ c̲ n
a̲  b̲ × c̲n a̲ b̲ × c̲coscos π6  n Since, a̲ makes an angle π6 with the normal of the plane containing b̲, c̲ that is b̲ × c̲.
a̲ b̲ × c̲coscos π6  n
22  b̲ × c̲ 32n
Since, a̲ = 22 is given in the question and we know that cos π6 = 32     This can be further simplified as
22  b̲ × c̲ 32n
6  b̲ × c̲ n
6 b̲ c̲sinsin π6  n̂n Since, we know that n̂ = 1 and sin π6  = 12  6 b̲ c̲sinsin π6  n̂n
6  b̲ × c̲ 12n
32 b̲ c̲ n
We can conclude that  α1 α2 α3 β1 β2 β3 γ1 γ2 γ3 n  =   3 b̲ c̲2n
Hence, option (2) is correct.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring