Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let a differentiable function f satisfy f(x)+3xf(t)tdt=x+1,x3. Then 12 f(8) is equal to:

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

17

b

34

c

1

d

19

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

f(x)+3xf(t)tdt=x+1;x3.(1) differentiating with respect to x
f(x)+f(x)x=12x+1   (linear form)
Integrating factor is e1xdx=x
 General solution is xf(x)=x2x+1dxxf(x)=(x+1)3/23x+1+C
Put  x =3 in equation (1) we have f(3)=2
 3(2)=13(8)2+CC=163
xf(x)=(x+1)3/23x+1+163 if x=8 8f(8)=9-3+163 4f(8)=3+83 12f(8)=17

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let a differentiable function f satisfy f(x)+∫3x f(t)tdt=x+1,x≥3. Then 12 f(8) is equal to: