Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let a=i^+2j^+k^ and b=2i^+7j^+3k^. Let L1:r=(-i^+2j^+k^)+λa,λR and L2:r=(j^+k^)+μb,μR be two lines. If the line L3 passes through the point of intersection of L1 and L2, and is parallel to a+b, then L3 passes through the point:

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

(2,8, 5)

b

(–1, –1, 1)

c

(5, 17, 4)

d

(8, 26, 12)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

L1:r=(i^+2j^+k)+λ(i^+2j^+k)r=(λ1)i^+2(λ+1)j^+(λ+1)k^L2:r=(j^+k^)+μ(2i^+7j^+3k^)r=2μi^+(1+7μ)j^+(1+3μ)k^
For point of intersection equating respective components
λ1=2μ2(λ+1)=1+7μλ+1=1+3μ
We get
λ=3 and μ=1a+b=3i^+9j^+4k^L3:r=2i^+8j^+4k^+α(3i^+9j^+4k^)For α=2,r=8i^+26j^+12k^

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon