Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  A(Z1),B(Z2),C(Z3)  are the vertices of triangle ABC respectively in anticlockwise sense. Arg(Z2Z1Z2Z3)=π2  and  Z4  be the point of intersection of  Arg(Z1ZZ1Z2)=A2 and  Arg(Z3ZZ3Z1)=C2  where A and C are angles of triangle at vertices A(Z1) and C(Z3) and Z5 be the point of intersection of  Arg(Z4ZZ4Z1)=π2  and  Arg(ZZ2ZZ3)=0  then which of the following option(s) is (are) CORRECT?

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Arg(Z3Z4Z1Z5)=π2

b

Arg(Z3Z4Z1Z5)=π2

c

|Z4Z5|2=|Z1Z5|22

d

|Z4Z5|=|Z1Z3|2|Z1Z3||Z2Z3|

answer is B, C, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

  Question ImageQuestion Image

Question Image

 

 

 

 

 

ADBI is a cyclic quadrilateral 
 AID=ABD=π2
ADI=ABI (chord AI subtends same angle on the circle)
ABI=π4 ( BI is angular bisector of angle B)
 DBI+DAI=π
 DBI=DBA+ABI=π2+π4=3π4 DAI=π4
AID is an isosceles triangle which is right angle at I
AI=ID=2AD ADC=ADI+IDC=π4+IDC =DAI+IAC=DAC   (IDC=IDB,IDB=IAB=A2) ADC=DACCD=CA BD=CDCB=CACB=ba AD2=AB2+DB2=c2+(ba)2=c2+b2+a22ab=2b22ab = 2b (b  a) AD=2b(ba)AD2=AI=DI CAD is isosceles triangle   CED=π2 Arg(z3z1z1z5)=π2

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring