Q.

Let  A=[aij]3×3  be a matrix such that aij=0 ij  and aij>0i=j   . If adj A satisfies the equation x39x2+px27=0, pR then which of the following is/are not correct 
Note: adjP,trP and detP denote adjoint matrix of matrix P, trace of matrix P and determinant of matrix P respectively]
 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

det.(A)=33

b

tr(A)=33

c

det.(adj(adjA))=36

d

tr.(A1)=133

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

A=(d1000d2000d3);adj.A=(d2d3000d1d3000d1d2)

 
Let C=adj. A satisfy  x39x+px27=0
Tr.(C)=9 and
det. C=27    |adj.A|=27
    |A2|=27   |A|=33
Also,   |adj.(adj.A)|=|A|4=36
Now, Tr.    (adj.A)=9 given
d1d2+d2d3+d3d1=9 ………..(1)
And|A|=d1d2d3=33 ………….(2)
1d1+1d2+1d3=933=3=Tr(A1)
Also, GM of d1;d2;d3  is  3
and,  H.M. of  d1d2d3 is  3
Tr.(A)=33
 

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let  A=[aij]3×3  be a matrix such that aij=0 ∀i≠j  and aij>0∀i=j   . If adj A satisfies the equation x3−9x2+px−27=0, p∈R then which of the following is/are not correct Note: adjP,trP and detP denote adjoint matrix of matrix P, trace of matrix P and determinant of matrix P respectively]