Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let  AB¯=i^+j^3k^.AC¯=3i^+j^+4k^. and  AD¯=2i^k^ are three co-terminus edges of a tetrahedron ABCD. If position vector of the centroid of tetrahedron is (i^+2j^+3k^)  then
 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

 Position vector of point A is  (2i^+3k^)

b

Acute angle between the face ABC and ACD is  cos114627972

c

Length of perpendicular from D to the plane ABC is  128111

d

Volume of tetrahedron is  83

answer is B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let  A(a)                            c(3i^+j^+4k^+a)
Now centre  =i^+2j^+3k^=4a+6i^+2j^4
                a=i^+3j^+6k^2
Volume of tetrahedron
             =16[AB¯  AC¯  AD¯]=83
area of  ΔABC=12|AB¯×AC¯|=1112
            83=13(1112)×h     h=128111 cosθ=(AB¯.AC¯)(AC¯.AD¯)|AB¯×AC¯||AC¯×AD¯| cosθ=(AB¯.AC¯)(AC¯.AD¯)(AB¯×AD¯)(AC¯.AC¯)|AB¯×AC¯||AC¯×AD¯| AB¯.AC¯=8,  AC¯.AD¯=2 AB¯.AD¯=5,  AC¯.AC¯=26 |AB¯×AC¯|=222 AC¯×AD¯=i^+11j^2k^ |AC¯×AD¯|=125+4+1=126 cosθ=146126222
    
      
      
      
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon