Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  AB¯=i^+j^3k^.AC¯=3i^+j^+4k^. and  AD¯=2i^k^ are three co-terminus edges of a tetrahedron ABCD. If position vector of the centroid of tetrahedron is (i^+2j^+3k^)  then
 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

 Position vector of point A is  (2i^+3k^)

b

Acute angle between the face ABC and ACD is  cos114627972

c

Length of perpendicular from D to the plane ABC is  128111

d

Volume of tetrahedron is  83

answer is B, C, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let  A(a)                            c(3i^+j^+4k^+a)
Now centre  =i^+2j^+3k^=4a+6i^+2j^4
                a=i^+3j^+6k^2
Volume of tetrahedron
             =16[AB¯  AC¯  AD¯]=83
area of  ΔABC=12|AB¯×AC¯|=1112
            83=13(1112)×h     h=128111 cosθ=(AB¯.AC¯)(AC¯.AD¯)|AB¯×AC¯||AC¯×AD¯| cosθ=(AB¯.AC¯)(AC¯.AD¯)(AB¯×AD¯)(AC¯.AC¯)|AB¯×AC¯||AC¯×AD¯| AB¯.AC¯=8,  AC¯.AD¯=2 AB¯.AD¯=5,  AC¯.AC¯=26 |AB¯×AC¯|=222 AC¯×AD¯=i^+11j^2k^ |AC¯×AD¯|=125+4+1=126 cosθ=146126222
    
      
      
      
 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring