Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let  ABC be a triangle such that 

cotA+cotB+cotC=3 then prove that ABC  is an equilateral 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

A+B+C=π; A+B=πC

Apply 'Cot' on both sides 

Cot(A+B)=Cot(πC)

CotA CotB1CotB+CotA=CotC

CotA CotB1=CotC Cot BCot C Cot A

CotA CotB+CotB CotC+CotC CotA=1

Cot A Cot B=1(1)

Given CotA+CotB+CotC=3(2)

Let CotA=x  CotB=y   CotC=z

Then x+y+z=3 and xy+yz+zx=1(3)

Now (xy)2+(yz)2+(zx)2

=2x2+y2+z22(xy+yz+zx)

=2(x+y+z)22(xy+yz+zx)2(xy+yz+zx)

=2(3)22(1)2  from (3)

=2(32)2=22=0

(xy)2+(yz)2+(zx)2=0

 (xy)2=0,(yz)2=0 and (zx)2=0

xy=0, yz=0, zx=0x=y=z

But x+y+z=3  x=y=z=13

CotA=CotB=CotC=13

Since A+B+C=180 A=B=C=60

Since all the three angles are equal, it is an equilateral triangle.

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon