Q.

Let  ABC be a triangle such that 

cotA+cotB+cotC=3 then prove that ABC  is an equilateral 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

A+B+C=π; A+B=πC

Apply 'Cot' on both sides 

Cot(A+B)=Cot(πC)

CotA CotB1CotB+CotA=CotC

CotA CotB1=CotC Cot BCot C Cot A

CotA CotB+CotB CotC+CotC CotA=1

Cot A Cot B=1(1)

Given CotA+CotB+CotC=3(2)

Let CotA=x  CotB=y   CotC=z

Then x+y+z=3 and xy+yz+zx=1(3)

Now (xy)2+(yz)2+(zx)2

=2x2+y2+z22(xy+yz+zx)

=2(x+y+z)22(xy+yz+zx)2(xy+yz+zx)

=2(3)22(1)2  from (3)

=2(32)2=22=0

(xy)2+(yz)2+(zx)2=0

 (xy)2=0,(yz)2=0 and (zx)2=0

xy=0, yz=0, zx=0x=y=z

But x+y+z=3  x=y=z=13

CotA=CotB=CotC=13

Since A+B+C=180 A=B=C=60

Since all the three angles are equal, it is an equilateral triangle.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let  ABC be a triangle such that cotA+cotB+cotC=3 then prove that ABC  is an equilateral