Q.

Let α, β and γ be real numbers. Consider the following system of linear equations
x + 2y + z = 7
x + αz = 11
2x – 3y + βz = γ
Match each entry in List-I to the correct entries in List-II.

 List-I  List-II 
P)If β=12(7α3) and γ=28 then the system has1)a unique solution
Q)If β=12(7α3) and γ28, then the system has2)no solution
R)If β12(7α3), where α = 1 and γ28, then the system has3)infinitely many solutions
S)If β12(7α3) where α = 1 and γ=28, then the system has4)x = 11, y = –2 and z = 0 as a solution
  5)x = –15, y = 4 and z = 0 as a solution
 PQRS
1)3214
2)3254
3)2145
4)2113

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

2

b

1

c

3

d

4

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

x+2y+z=7 ----(1) x+αz=11 ----(2) 2x3y+βz=γ ---(3)
3×(1)+2×(3)7x+z(3+2β)=21+2γ  If 71=3+2βα=21+2γ117α=3+2ββ=12(7α3) and 77=21+2γr=28
If β=12(7α3) and γ=28 then the system has infinitely many solutions P3
If β=12(7α3) and γ28, then the system has no solution Q2
If β12(7α3), where α = 1 and γ28, then the system has unique solution R1
If β12(7α3) where α = 1 and γ=28, then x = 11, y = -2, z = 0 is a solution to the given system S4.       

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon