Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let α and β be the roots of the quadratic equation ax2+bx+c=0 andΔ=b24ac. If α+β;  α2+β2;  α3+β3 are in geometric progression, then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

aΔ=0

b

bΔ=0

c

cΔ=0

d

Δ=0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

α+β=ba;α2+β2=b22aca2;α3+β3=3abcb3a3are in geometric progression.

(b22ac)2a4=b(b33abc)a4ac(b24ac)=0cΔ=0

or

α+β,α2+β2,α3+β3 are in G.P

α2+β22=(α+β)α3+β3α4+β4+2α2β2=α4+β4+α3β+αβ3α2β2α3βαβ3+α2β2=0α2β(βα)αβ2(βα)=0α2βαβ2(βα)=0αβ(αβ)(βα)=0αβ(αβ)2=0α=0 or β=0 or αβ=0

 Case (1) α=0 or β=0 x=0 is a solution of given equation  c=0 αβ=0 α=β Δ=b24ac=0

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring