Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let A=R-{3}, B=R-{1}. If f: AB be defined by fx=x-2x-3, xA. Then, show that f is bijective.                                                     

OR

Let A={1, 2, 3} and R={(a, b):a, b A and a2-b25}. Write R as set of ordered pairs. Mention whether R is

i.                 Reflexive

ii.               Symmetric

iii.             Transitive

              Given reason in each case.   

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given,  A=R-{3},B=R-{1}

f:AB is defined by  f(x)=x-2x-3xA

For injectivity 

  Let fx1=fx2x1-2x1-3=x2-2x2-3  x1-2x2-3=x2-2x1-3  x1x2-3x1-2x2+6=x1x2-3x2-2x1+6  -3x1-2x2=-3x2-2x1  -x1=-x2x1=x2

So, f(x) is an injective function

For surjectivity

Let y=x-2x-3x-2=xy-3y

x(1-y)=2-3yx=2-3y1-y

x=3y-2y-1A,yB[codomain]

So, f(x) is surjective function.

Therefore, we can say that f(x) is a bijective function.

OR

Given: A={1,2,3} and R=(a,b):a,bAand a2-b25 .  Put a=1, b=1,12-125,(1,1) is an order pair

Put a=1, b=2,12-225,(1,2) is an ordered pair.

Put a=1, b=3,12-32>5,(1,3) is not an ordered pair.

Put a=2, b=1,22-125,(2,1) is  an ordered pair.

Put a=2, b=2,22-225,(2,2) is an ordered pair.

Put a=2, b=3,22-325,(2,3) is an ordered pair.

Put a=3, b=1,32-12>5,(3,1) is not an ordered pair.

Put a=3, b=2,32-225,(3,2) is not an ordered pair.

Put a=3, b=3,32-325,(3,3) is an ordered pair.

R={(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)}

i. For  (a,a)R

a2-a2=05. Thus, it is reflexive.

ii. Let  (a,b)R

(a,b)R,a2-b25

b2-a25

(b, a) R

Hence, it is symmetric

iii. Put a=1, b=2,c=3

12-225 22-325

But 12-32>5

Thus, it is not transitive

Therefore, (i) R is reflexive. (ii) R is symmetric but (iii) R is not transitive.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let A=R-{3}, B=R-{1}. If f: A→B be defined by fx=x-2x-3, ∀x∈A. Then, show that f is bijective.                                                     ORLet A={1, 2, 3} and R={(a, b):a, b ∈A and a2-b2≤5}. Write R as set of ordered pairs. Mention whether R isi.                 Reflexiveii.               Symmetriciii.             Transitive              Given reason in each case.