Q.

Let B be a skew symmetric matrix of order  3×3  with real entries.
Given I – B and I + B are non–singular matrices.
If  A=(I+B)(IB)1  where det(A) > 0, then the value of det(2A) – det(adjA) is
[Here det(P) denotes determinant of square matrix P and det(adj P) denotes determinant of adjoint of square matrix P respectively]

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 7.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

A=(I+B)(IB)1       AAT=(I+B)(IB)1((IB)T)1(I+B)T =(I+B)(IB)1(I+B)1(IB)     =(I+B)((IB)(IB))1(IB)  =(I+B)((IB)(I+B))1(IB)

( I + B, I  B are commutative)

AAT=(I+B)(I+B)1(IB)1(IB)=I

AAT=I

|AA|T=|I|=1|A|2=1  as  |A|>0|A|=1

det (2A) – det(adj(A)) = 8 det(A) –  det(A)2  =8(1)(1)2=7

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let B be a skew symmetric matrix of order  3×3  with real entries.Given I – B and I + B are non–singular matrices.If  A=(I+B)(I−B)−1  where det(A) > 0, then the value of det(2A) – det(adjA) is[Here det(P) denotes determinant of square matrix P and det(adj P) denotes determinant of adjoint of square matrix P respectively]