Q.

Let α,β  be the roots of the quadratic equation x2+6x+3=0. Then α23+β23+α14+β14α15+β15+α10+β10 is equal to

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

72

b

81

c

9

d

729

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

x2+3=6x x4+6x2+9=6x2x4+9=0 α23+β23+α14+β14α15+β15+α10+β10=α14(α9+1)+β14(β9+1)α10(α5+1)+β10(β5+1) =(729)α2(81α+1)729β2(81β+1)81α2(9α+1)+81β2(9β+1) =(9)[81α3+α2+81β3+β29α3+α29β3+β2] (α+β=6;αβ=3α2+β2=0) =981(α3+β3)9(α3+β3)=81

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon