Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

Let E,F,G and H be 4 distinct points inside square ABCD whose area is 1 sq unit, such that  EDC=ECD=HDA=HAD=GAB=GBA=FBC=FCB=150

 LIST-I LIST-II
PIf area of quadrilateral EFGH equal to  ab , where  a,bN
then a+b is equal to
11
QAEB=πk,  then k is equal to23
RThe radius of circle circumscribing the ΔAHD  is equal to 35
SLet the lengths of perpendiculars from vertices G, A and H to opposite sides of  ΔAHD be  h1,h2  and  h3 , respectively. Let  1h12+1h22+1h32=a+b, where a,bN  , then  ba  is equal to46
  59

The correct option is 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

P(3),Q(2),R(1),S(4)

b

P(2),Q(3),R(4),S(5)

c

P(3),Q(1),R(4),S(2)

d

P(3),Q(2),R(4),S(1)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

ΔAEM,a+b=2+3=5EFGH=12FH×EGWe have,  ABCD is square  whose each side  is 1 sq unit, and E,F,G,H,4 distinct  such that  
 EDC=ECD=HDA=HAD=GAB=GBA=FBC=FCB=150
Question Image

P.  FH=12(12tan150)=31
  EG=12(12tan150)=31
Area of quadrilateral  EFGH=12FH×EG
 12(31)2=23
 a+b=2+3=5
Q.EM=EG+GM= 31+12tan150=32
In  ΔAEM,
 tanEAM=EMAM=3212=3 EAM=600
 
 

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let E,F,G and H be 4 distinct points inside square ABCD whose area is 1 sq unit, such that  ∠EDC=∠ECD=∠HDA=∠HAD=∠GAB=∠GBA=∠FBC=∠FCB=150 LIST-I LIST-IIPIf area of quadrilateral EFGH equal to  a−b , where  a,b∈Nthen a+b is equal to11Q∠AEB=πk,  then k is equal to23RThe radius of circle circumscribing the ΔAHD  is equal to 35SLet the lengths of perpendiculars from vertices G, A and H to opposite sides of  ΔAHD be  h1,h2  and  h3 , respectively. Let  1h12+1h22+1h32=a+b, where a,b∈N  , then  ba  is equal to46  59The correct option is