Q.

Let f and g be twice differentiable functions on R such that f''(x)=g''(x)+6x,f'(1)=4g'(1)3=9,f(2)=3g(2)=12 then which of the following is TRUE ?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

|f'(x)g '(x)|<62<x<2

b

There exists no x0(1,32) such that f(x0)g(x0)=0

c

g(2)+f(2)=20

d

If 1<x<2 then |f(x)g(x)|<10

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

f//(x)=g//(x)+6x 
f/(x)g/(x)=3x2+C 
f/(1)=9,  g/(1)=3,f(2)=12,  g(2)=4 
At x = 1, f/(1)g/(1)=3+C  
93=3+CC=3 
f/(x)g/(x)=3x2+3 
f(x)=g(x)+x3+3x+D 
f(2)=12f(2)=g(2)+8+16+D 
g(2)=4  12 = 4 + 8 + 6 + D
 D = –6
f(x)=g(x)+x3+3x6 
h(x)=f(x)g(x)=x3+3x6 
h(2) = 8 + 6 – 6 = 8
h(–2) = –8 – 6 – 6 = –20
For –1 < x < 2, h(x) = f(x) – g(x) = x3+3x6  
h/(x)=3x2+3for  xR 
h/(1)=f/(1)g/(1)|3x2+3|<6 
x2<11<x<1 
For x(1,1)|f/(x)g/(x)|<6  
D) f(1)g(x)=0x3+3x6=0  
h(1)=ve,  h(32)=+ve 
So, there exists x0(1,32) such that f(x0)=g(x0)  

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon