Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f be a function on the positive integers, i.e., f :  with the following properties:

(i) f(2)=2

(ii) f(m×n)=f(m)f(n) for all positive integers m and n,

(iii) f(m) >f(n) for m>n.

Find f(1998)

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

b

c

d

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

2=f(2)=f(1×2)=f(1)×f(2)=f(1)×2  f(1)=22=1

Now , f(4)> f(3)>f(2)=2

and  f(4)=f(2)×f(2)=4

and so, 4>f(3)>2 and f(3) is an integer, hence f(3)=3

and  f(6)>f(5)>f(4)

f(2)>f(3)>f(5)>4 2×3>f(5) >4 f(5)=5

So, we guess that f(n)=n. Let us prove it.

We will use mathematical induction for proving.

f(n)=n is true for n=1,2

Let us assume that the result is true for all m<n, and then we shall prove it for n, where n>2.

If nis even, then let n=2m

f(n)=f(2m)=f(2)×f(m)=2×m=2m=n.

If n is odd and n=2m+1, then n>2m

2m<2m+1<2m+2 f(2m)<f(2m+1)<f(2m+2) f(2).f(m)<f(2m+1)<f(2).f(m+1) 2m<f(2m+1)<2m+2

There is exactly one integer 2m+1 between 2m and 2m+2 and hence,

f(n)=f(2m+1)=(2m+1)=n

Thus f(n)=n for all n

Hence, f(99)=99

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring