Q.

Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

f′′(x)=0 for all x(0, 2)

b

f′′(x)>0 for all x(0,2)

c

f(x)=0 for some x[0,2]

d

f′′(x)=0 for some x(0,2)

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

f(0)=0, f(1)=1 and f(2)=2

Let h(x)=f(x)-x

Clearly h (x) is continuous and twice differentiable on (0, 2)

Also,  h(0)=h(1)=h(2)=0

  h(x) satisfies all the condition of Rolle’s theorem.

  there exist C1(0,1) such that hc1=0

    fc11=0    fc1=1

also there exist c2(1,2) such that hc2=0

    fc2=1

Now, using Rolle’s theorem on C1,C2 for f(x)

We have f′′(c)=0,cc1,c2

Hence, f′′(x)=0 for some x(0,2)

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon