Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

f′′(x)=0 for all x(0, 2)

b

f′′(x)>0 for all x(0,2)

c

f(x)=0 for some x[0,2]

d

f′′(x)=0 for some x(0,2)

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

f(0)=0, f(1)=1 and f(2)=2

Let h(x)=f(x)-x

Clearly h (x) is continuous and twice differentiable on (0, 2)

Also,  h(0)=h(1)=h(2)=0

  h(x) satisfies all the condition of Rolle’s theorem.

  there exist C1(0,1) such that hc1=0

    fc11=0    fc1=1

also there exist c2(1,2) such that hc2=0

    fc2=1

Now, using Rolle’s theorem on C1,C2 for f(x)

We have f′′(c)=0,cc1,c2

Hence, f′′(x)=0 for some x(0,2)

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon