Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f′′(x) be continuous  at  x=0 and f′′(0)=4Then value of =limx02f(x)3f(2x)+f(4x)x2   is 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

b

c

d

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

given f ( x ) is continuous at  x=0  

=limx0f′′(x)=f′′(0)=4 

Now, limx02f(x)3f(2x)+f(4x)x200 form 

=limx02f(x)6f(2x)+4f(4x)2x00 form =limx02f′′(x)12f′′(x)+16f′′(4x)2

[Using L' Hospital Rule successively] 

 =2f′′(0)12f′′(0)+16f′′(0)2=12

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring