Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(n)=1+12+13+14+........+1n such that P(n)f(n+2)=P(n)f(n)+q(n) , where  P(n),Q(n)are polynomials of least possible degree and P(n) has leading coefficient unity. Then match the following Column-I with Column-II.

 COLUMN-I COLUMN-II
A)n=1mp(n)2nP)m(m+1)2
B)n=1mq(n)32Q)5m(m+7)2
C)n=1mp(n)+q2(n)11nR)3m(m+7)2
D)n=1mq2(n)p(n)7nS)m(m+7)2

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

AR;BP;CQ;DS

b

AS;BR;CQ;DP

c

AS;BP;CQ;DR

d

AQ;BP;CS;DR

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

 p(n)f(n+2)=p(n)f(n)+q(n)
 p(n)(1n+2+1n+1)=q(n)
p(n)(2n+3(n+1)(n+2))=q(n) 
 p(n)=n2+3n+2;q(n)=2n+3
A)  n=1mp(n)2n=n=1mn2+3nn=n=1m(n+3)
 =m(m+1)2+3m=m(m+72)
B)  n=1mq(n)32=n=1m2n2=m(m+1)2
C)  n=1mp(n)+q2(n)11n=n=1nn2+3n+2+4n2+12n+9+11n =n=1m(5n+15) =5.m(m+1)2+15m =52m(n+1+3+2)=5m(n+7)2
 
D)  n=1mq2(n)p(n)7n=3m(m+7)2

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring