Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let f:R → R be a continuos onto function satisfying f(x)+f(-x)=0, xR. If f(-3)=2 and f(5) =4 in [-5,5]. Then the minimum number of roots of the equation f(x) = 0 is 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

f(x) + f(-x) = 0

f(x) is odd functionsSince points (-3,2) and (5,4) lie on the curve(3,-2) and (-5,-4) will also lie on the curveFor minimum number of roots, graph of continuos function f(x) is as follows

Question Image

From the above graph of f(x) , it is clear that equation f(x) = 0 has at least three real roots

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let f:R → R be a continuos onto function satisfying f(x)+f(-x)=0, ∀x∈R. If f(-3)=2 and f(5) =4 in [-5,5]. Then the minimum number of roots of the equation f(x) = 0 is