Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let f:RR+ be a differentiable function satisfying  f'(x)=2f(x)  xR. Also  f(0)=1andg(x)=f(x).cos2x. If  n1 represent number points of local maxima of g(x)  in [π,π]  and n2  is the number of points of local minima of g(x)  in  [π,π] and n3  is the number of points in [π,π] where g(x) attains its global minimum value, then find the value of  (n1+n2+n3)

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 6.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Given    f'(x)=2f(x)
f'f=2f(x)=Ae2x
f(0)=1=Af(x)=e2x
Question Image
NOW,  g(x)=e2x.cos2xg'(x)=e2x(2cosxsinx+2cos2x)
     g'(x)=2cosxe2x(cosxsinx)
g'(x)=0x=3π4,π4,π2,π2
pointsofmaximaare3π4,π4 and  points of minima are  π2,π2
And global minimum value occurs at ±π2  which is zero
Hence,  n1=2,n2=2,n3=2n1+n2+n3=6
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon