Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let f(x) be a non-constant twice differentiable function defined on (,) such that f(x)=f(1-x)and f1(14)=0.Then,

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

f1(x)vanishes at least twice on [0,1]

b

f1(12)=0

c

012f(t)esinπtdt=121f(1t)esinπtdt

d

1212f(x+12)sinxdx=0

answer is A, B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given that, f(x)=f(1x)

 On differentiating w.r.t. x,we get f1(x)=f1(1x)

            Let us put x=12

            2f1(12)=0f1(12)=0

            Since, f1(12)=0 and f1(14)=0

            f"(x)=0at two points in [0,1].

            Now, 1/21/2f(x+12)sinxdx=0

            As f(x+12)sinxis an odd function which is clear from the following explanation.

            The following explanation.

            Let g(x)=f(x+12)sinx,

            g(x)=f(12x)sin(x)=sinxf(1(12x))

            =sinxf(12+x)=g(x)

            Moreover, 1/21f(1t)esin(πt)dt=01/2f(u).esinπudu

            Where 1t=u

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon