Q.

Let f(x) be a non-constant twice differentiable function defined on (,) such that f(x)=f(1-x)and f1(14)=0.Then,

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

f1(x)vanishes at least twice on [0,1]

b

f1(12)=0

c

012f(t)esinπtdt=121f(1t)esinπtdt

d

1212f(x+12)sinxdx=0

answer is A, B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given that, f(x)=f(1x)

 On differentiating w.r.t. x,we get f1(x)=f1(1x)

            Let us put x=12

            2f1(12)=0f1(12)=0

            Since, f1(12)=0 and f1(14)=0

            f"(x)=0at two points in [0,1].

            Now, 1/21/2f(x+12)sinxdx=0

            As f(x+12)sinxis an odd function which is clear from the following explanation.

            The following explanation.

            Let g(x)=f(x+12)sinx,

            g(x)=f(12x)sin(x)=sinxf(1(12x))

            =sinxf(12+x)=g(x)

            Moreover, 1/21f(1t)esin(πt)dt=01/2f(u).esinπudu

            Where 1t=u

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon