Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(x)=dx(3+4x2)43x2,|x|<23. If f(0)=0 and f(1)=1αβtan1(αβ).α,β>0, then α2β2 is equal to _____

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

24

b

22

c

23

d

21

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

f(x)=dx(3+4x2)43x2

x=1t=1t2dt(3t2+4)t24t23t=dt.t(3t2+4)4t23:Put  4t23=z2

=14z    dz(3(z2+34)+4)z=dz3z2+25=13dzz2+(53)2=1335tan1(3z5)+C

=153tan1(354t23)+C

f(x)=153tan1(3543x2x2)+C

f(0)=0c=π103

f(1)=153tan1(35)+π103

f(1)=153cot1(35)=153tan1(53)

α=5:β=3=α2β2=22

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let f(x)=∫dx(3+4x2)4−3x2,|x|<23. If f(0)=0 and f(1)=1αβtan−1(αβ). α,β>0, then α2−β2 is equal to _____