Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let f(x)=dx(3+4x2)43x2,|x|<23. If f(0)=0 and f(1)=1αβtan1(αβ).α,β>0, then α2β2 is equal to _____

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

24

b

22

c

23

d

21

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

f(x)=dx(3+4x2)43x2

x=1t=1t2dt(3t2+4)t24t23t=dt.t(3t2+4)4t23:Put  4t23=z2

=14z    dz(3(z2+34)+4)z=dz3z2+25=13dzz2+(53)2=1335tan1(3z5)+C

=153tan1(354t23)+C

f(x)=153tan1(3543x2x2)+C

f(0)=0c=π103

f(1)=153tan1(35)+π103

f(1)=153cot1(35)=153tan1(53)

α=5:β=3=α2β2=22

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon