Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  f(x)=sinπxx2,x>0
Let  x1<x2<x3<.......xn<... be all the points of local maximum of f. 
and  y1<y2<y3<.......yn<... be all the points of local minimum of f.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x1>y1

b

|xnyn|<1  for every n

c

xn(2n,2n+12) for every n 

d

xn+1xn>2 for every n

answer is A, C, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

f(x)=sinπxx2f'(x)=πx2cosπx2xsinπxx4=2cosπx(πx2tanπx)x3

Question Image

f'(x)=0cosπx=0  or  πx2=tanπx       πx=(2n+1)π2   or   πx2=tanπx                x=(2n+1)2,n1
From graph, we can see that  x=2n+12
 Question Image
f'(x)  doesn’t change sign so these points are neither local maxima nor local minimum
 Similarly,   x:πx2=tanπx        Where   yn(2n1,2n12)n=1,2,3.....      and    xn(2n,2n+12)n=1,2,3....

xn+1yn+1>1   and  yn+1xn>1xn+1xn>2

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring