Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

Let  f(x)=sinπxx2,x>0
Let  x1<x2<x3<.......xn<... be all the points of local maximum of f. 
and  y1<y2<y3<.......yn<... be all the points of local minimum of f.

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

x1>y1

b

|xnyn|<1  for every n

c

xn(2n,2n+12) for every n 

d

xn+1xn>2 for every n

answer is A, C, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

f(x)=sinπxx2f'(x)=πx2cosπx2xsinπxx4=2cosπx(πx2tanπx)x3

Question Image

f'(x)=0cosπx=0  or  πx2=tanπx       πx=(2n+1)π2   or   πx2=tanπx                x=(2n+1)2,n1
From graph, we can see that  x=2n+12
 Question Image
f'(x)  doesn’t change sign so these points are neither local maxima nor local minimum
 Similarly,   x:πx2=tanπx        Where   yn(2n1,2n12)n=1,2,3.....      and    xn(2n,2n+12)n=1,2,3....

xn+1yn+1>1   and  yn+1xn>1xn+1xn>2

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon