Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  f(x)=x26x+5x25x+6

Match of expressions/statements in Column I with expressions/statements in Column II and indicate your answer by darkening the appropriate bubbles in the  matrix given in the ORS

 

Column-I

 

Column-II

A)

If 1<x<1, then f(x) satisfies

p)

0<f(x)<1

B)

If 1<x<2, then f(x) satisfies

q)

f(x)<0

C)

If 3<x<5, then f(x) satisfies

r)

f(x)>0

D)

If x>5,then f(x) satisfies

s)

f(x)<1

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(A)(q,s,p);(B)(p,s);(C)(q,r);(D)(r,s,p)

b

(A)(q,s,p);(B)(p,s);(C)(p,r);(D)(r,s,q)

c

(A)(r,s,p);(B)(q,s);(C)(q,s);(D)(r,s,p)

d

(A)(r,s,p);(B)(p,r);(C)(p,q);(D)(r,s,q)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 f(x)=x26x+5x25x+6=(x5)(x1)(x2)(x3)
 (A) If 1<x<1 then f(x)=(ve)(ve)(ve)(ve)=+ve
 f(x)>0(r)
 Also f(x)1=x1x25x+6=(x+1)(x2)(x3)
 For  f(x)1<0f(x)<1(s)
 0<f(x)<1(p)
 (B)  If 1<x<2 then f(x)=(ve)(+ve)(ve)(ve)=ve
 f(x)<0 (q)  and  so f(x)<1(s) 
 (C)  If  3<x<5  then f(x)=(ve)(+ve)(+ve)(+ve)=ve 
 f(x)<0(q) and so f(x)<1(s)
 (D) For f(x)1=(x+1)(x2)(x3)<0
Also x>5,f(x)<1(s)

0<f(x)<1(p)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring