Q.

Let  f(x)=xcosx,x[3π2,2π] and  g is the inverse function of  .
If  02πg(x)dx=aπ2+bπ+c, where  a,b,cR, then the value of  2(a+b+c)=.
 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 f(x)=xcosx,x[3π2,2π]      f'(x)=(xsinx+cosx)>0,x[3π2,2π]
     f(x)  is increasing function in  [3π2,2π]
Also, f(3π2)=0 ;    f(2π)=2π
So,  3π22πf(x)dx+02πg(x)dx=4π2
Now,   3π22πxI.(cosx)IIdx=1+3π2  (Using IBP)
 02πg(x)dx=(4π23π21)

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let  f(x)=xcosx,x∈[3π2,2π] and  g is the inverse function of  .If  ∫02πg(x)dx=aπ2+bπ+c, where  a,b,c∈R, then the value of  2(a+b+c)=.