Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let g(x)=ax2+bx+c,a,b,cN and satisfies 01g(x)dx=116. Let f (x) be a continuous and derivable function in (x1,x2). If f(x).f'(x)x1(f(x))4 and limxx1+(f(x))2=1 and limxx2(f(x))2=12, then the minimum value of [x12x22] is equal to, (where [.] denotes greatest integer function.) 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2abc

b

a+bc

c

b+ca

d

ab

answer is A, B, C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 01g(x)dx=11601(ax2+bx+c)dx=116
 a3+b2+c=116
 2a+3b+6c=11;a,b,cN
 a=b=c=1
 f(x)f'(x)1(f(x))4x
Integration on both sides
x1x2f(x)f'(x)1(f(x))4dxx1x2xdx 
12sin1((f(x))2)]x1x2x22x122 
π6π2x22x12 
x12x22π3[x12x22]min=1   

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring