Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let g(x)=ax2+bx+c,a,b,cN and satisfies 01g(x)dx=116. Let f (x) be a continuous and derivable function in (x1,x2). If f(x).f'(x)x1(f(x))4 and limxx1+(f(x))2=1 and limxx2(f(x))2=12, then the minimum value of [x12x22] is equal to, (where [.] denotes greatest integer function.) 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

2abc

b

a+bc

c

b+ca

d

ab

answer is A, B, C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 01g(x)dx=11601(ax2+bx+c)dx=116
 a3+b2+c=116
 2a+3b+6c=11;a,b,cN
 a=b=c=1
 f(x)f'(x)1(f(x))4x
Integration on both sides
x1x2f(x)f'(x)1(f(x))4dxx1x2xdx 
12sin1((f(x))2)]x1x2x22x122 
π6π2x22x12 
x12x22π3[x12x22]min=1   

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let g(x)=ax2+bx+c,a,b,c∈N and satisfies ∫01g(x)dx=116. Let f (x) be a continuous and derivable function in (x1,x2). If f(x).f'(x)≥x1−(f(x))4 and limx→x1+(f(x))2=1 and limx→x2−(f(x))2=12, then the minimum value of [x12−x22] is equal to, (where [.] denotes greatest integer function.)