Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let I(x)=x+7xdx and I(9)=12+7loge7. If I(1)=α+7loge(1+22), then α4 is equal to _______.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 64.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

I(x)=x+7xdx Put x=7tan2θ    dx=14tanθsec2θdθ I=7(1+tan2θ)7tan2θ14tanθsec2θ    I=14sec3θ
Using the reduction formula to evaluate sec3θ   , we get
I=7x(7+x)7+ln7+x7+x7
Given, I(9)=12+7loge7
     12+7loge7=79(16)7+72  loge(7)+c
c=72loge7=7loge7 I=7x(7+x)7+ln7+x7+x7+7loge7 I(x)=x(7+x)+7loge(x+7+x) I(1)=22+7loge(22+1) α=22;α4=64

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let I(x)=∫x+7xdx and I(9)=12+7loge7. If I(1)=α+7loge(1+22), then α4 is equal to _______.