Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let I(x)=x2xsec2x+tanx(xtanx+1)2dx. If I(0)=0. then Iπ4 is equal to

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

loge(π+4)216+π24(π+4)

b

loge(π+4)232-π24(π+4)

c

loge(π+4)232+π24(π+4)

d

loge(π+4)216-π24(π+4)

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

I(x)=x2xsec2x+tanx(xtanx+1)2dx

=x2xsec2x+tanx(xtanx+1)2dx-2(x)xsec2x+tanx(xtanx+1)2dxdx

=x2(-1)(xtanx+1)+2xxtanx+1dx

=-x2xtanx+1+2xcosxxsinx+cosxdx=-x2xtanx+1+2ln(xsinx+cosx)

Iπ4=-π24(π+4)+2lnπ+442 =-π24(π+4)+ln(π+4)232

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon