Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let  In=03π2(ln|sinx|)cos(2nx)dx where  nN. If  (12I316I2) is  kπ, then value of k is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

In=03π2ln(|sinx|)Icos(2nx)IIdx

applying integration by parts

In=ln|sinx|.sin2nx2n|03π203π2cotx.sin2nx2ndx           In=012nIn'          In'=03π2cosx.sin2nxsinxdx            In'In1'=03π2cosx(sin2nxsin(2n2))xsinxdx  =03π22cosx.cos(2n1)xsinxsinxdx      In'In1'=03π22cos(2n1)x.cosxdx=0          In'=In1'=In2'=...........I1'

In'=03π2sin2xcosxsinxdx=03π22cos2xdx=03π2(1+cos2x)dx=3π2         In=3π4n       12I3=3π       16I2=6π12I316I2=3π

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let  In=∫03π2(ln|sinx|)cos(2nx)dx where  n∈N. If  (12I3−16I2) is  kπ, then value of k is