Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  l1 and  l2 be the lines  r1=λ(i^+j^+k^) and  r2=(j^k^)+μ(i^+k^), respectively. Let  X be the set of all the planes H that contain the line l1. For a plane  H, let  d(H) denote the smallest possible distance between the points of  l2 and  H. Let  H0 be a plane in  X for which  d(H0) is the maximum value of  d(H) as H  varies over all planes in  X.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

distance of  (0,1,2) from  H0 is  2

b

d(H0)=12

c

distance of origin from  H0 is 0

d

distance of origin from the point of intersection of  y=z,x=1 and  H0 is  3

answer is A, B, C, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

l1:r1=λ(i+j+k)=a¯+λb¯ l2:r2=jk+μ(i+k)=c¯+μd¯ Here,  [a¯c¯b¯d¯]=|011111101|=10

   l1 and  l2 are skew – lines.
    H0  is the plane containing  l1 and parallel to  l2
  Equation of  H2  is  |xyz111101|=0xz=0
P)  d(H0)= Shortest distance between  d(H0)=  and  l2=12
Q)  d=|022|=2
R) d=|002|=0  
H0  passes through  (0,0,0)
S) Point of intersection of given planes and  H0  is  (1,1,1)
Distance from origin =  (10)2+(10)2+(10)2=3

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring