Q.

Let  l1 and l2  be the lines r1=λ(i^+j^+k^)  and r2=(j^k^)+μ(i^+k^),  respectively. Let X be the set of all the planes H that contain the line  l1. For a plane H, let d(H) denote the smallest  possible distance between the points of  l2  and H. Let H0  be plane in X for which  d(H0)  is the maximum value of d(H) as  varies over all planes in X.  Match each entry in List-I to the correct entries in List-II.

 

List-I

 

List-II

P)The value of d(H0)  is1)0
Q)The distance of the point (0,1,2) from H0 is2)13
R)The distance of origin from H0 is3)3
S)

The distance of origin from the point of intersection of planes 

y =z, x= 1 and H0 is

4)2
  5)12

The correct option is :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

P5;Q4;R1;S3

b

P2;Q3;R1;S2

c

P2;Q4;R5;S3

d

P5;Q3;R4;S2

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Question Image

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question Image

 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let  l1 and l2  be the lines r1→=λ(i^+j^+k^)  and r2→=(j^−k^)+μ(i^+k^),  respectively. Let X be the set of all the planes H that contain the line  l1. For a plane H, let d(H) denote the smallest  possible distance between the points of  l2  and H. Let H0  be plane in X for which  d(H0)  is the maximum value of d(H) as  varies over all planes in X.  Match each entry in List-I to the correct entries in List-II. List-I List-IIP)The value of d(H0)  is1)0Q)The distance of the point (0,1,2) from H0 is2)13R)The distance of origin from H0 is3)3S)The distance of origin from the point of intersection of planes y =z, x= 1 and H0 is4)2  5)12The correct option is :