Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let  M=[aij],i,j{1,2,3}  be a  3×3  matrix such that  aij=2  if j+1 is divisible by i, other wise  aij=0 . 

Then which of the following statements is (are) TRUE?

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

The set  {XR3:MX=0}{0}  where  0=[000]

b

M is invertible matrix

c

There exists a non–zero column matrix  [a1a2a3]  and such that  M[a1a2a3]=[4a14a24a3]  

d

The matrix M+2I is not invertible, where I is the  3×3  identity matrix.

answer is B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

 M=[222202020]
|M|=0 matrix M is not invertible matrix
 M+2I=[422222022]|M+2I|=0
 MX=0[222202020][a1a2a3]=[000] 2a1+2a2+2a3=0,2a1+2a3=0,2a2=0 a1+a3=0,a2=0
{MX=0}{0}  correct
Infinite values of  a1,a3  are possible
  MX=4X                   [M4I]X=0 
                                         |M4I|=0  , so solution exists for X

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon