Q.

Let  m1,m2  be the slopes of two adjacent sides of a square of side a such that  a2+11a+3(m12+m22)=220. If one vertex of the square is  (10(cosαsinα),10(sinα+cosα)) , where α(0,π2)  and the equation of one diagonal  is  (cosαsinα)x+(sinα+cosα)y=10, then the value of  72(sin4α+cos4α)+a23a+13  is a 3 digit number having digits as

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

2

b

8

c

1

d

4

answer is A, B, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let  A= (10(cosαsinα),10(sinα+cosα))
BDbe(cosαsinα)x+(sinα+cosα)y=10 rdistancefromAtoBD=a2a=10 a2+11a+3(m12+m22)=220m12+m22=103 
m1=3,m2=13   or   m1=3,m2=13
Slope of other diagonal AC = sinα+cosαcosαsinα
 ACis(sinα+cosα)x(cosαsinα)y=0 Hence   sinα+cosαcosαsinα=tan(α+π4)α=π672(sin4α+cos4α)+a23a+13=128

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon