Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  n(P) represents the number of points  P(α,β) lying on the rectangular hyperbola xy=15! , under the conditions given in column I, match the value of  n(P) given in column II.

 

Column –I

 

Column –II

(A)

α,βI

(p)

32

(B)

α,βI+   and   HCF(α,β)=1

(q)

64

(C)

α,βI+   and   α  divides  β

(r)

96

(D)

α,βI+   and   HCF(α,β)=35  

(s)

4032

 

 

(t)

8064

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

At, Bq, Cr, Ds

b

Aq, Br, Cs, Dt

c

At, Bq, Cr, Dp

d

As, Bt, Cp, Dq

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 xy=15!   =211  36  53  72  111   131
(A) No. of the integral solutions = no. of ways of fixing x 
= the no. of factors of 15! 
 =(1+11)(1+6)(1+3)(1+2)(1+1)(1+1)=4032
  Total no. of integral solutions   =2×4032=8064
(B)  HCF  (α,β)=1. So identical primes should not be separated 
So, no. of solutions  =26=64
(C) The largest number whose perfect square can be made with 15!  is  25  35  5171
So the no. of ways of selecting x will be 
 (1+5)(1+3)(1+1)(1+1)=96
(D) Let  α=35α1 and β=35β  where  HCF(α1,β1)=1
Now,  αβ=15!    α1β1=2113651  111131
So, no. of solutions  =25=32

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let  n(P) represents the number of points  P(α,β) lying on the rectangular hyperbola xy=15! , under the conditions given in column I, match the value of  n(P) given in column II. Column –I Column –II(A)α,β∈I(p)32(B)α,β∈I+   and   HCF (α,β)=1(q)64(C)α,β∈I+   and   α  divides  β(r)96(D)α,β∈I+   and   HCF (α,β)=35  (s)4032  (t)8064