Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let  n(P) represents the number of points  P(α,β) lying on the rectangular hyperbola xy=15! , under the conditions given in column I, match the value of  n(P) given in column II.

 

Column –I

 

Column –II

(A)

α,βI

(p)

32

(B)

α,βI+   and   HCF(α,β)=1

(q)

64

(C)

α,βI+   and   α  divides  β

(r)

96

(D)

α,βI+   and   HCF(α,β)=35  

(s)

4032

 

 

(t)

8064

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

At, Bq, Cr, Ds

b

Aq, Br, Cs, Dt

c

At, Bq, Cr, Dp

d

As, Bt, Cp, Dq

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 xy=15!   =211  36  53  72  111   131
(A) No. of the integral solutions = no. of ways of fixing x 
= the no. of factors of 15! 
 =(1+11)(1+6)(1+3)(1+2)(1+1)(1+1)=4032
  Total no. of integral solutions   =2×4032=8064
(B)  HCF  (α,β)=1. So identical primes should not be separated 
So, no. of solutions  =26=64
(C) The largest number whose perfect square can be made with 15!  is  25  35  5171
So the no. of ways of selecting x will be 
 (1+5)(1+3)(1+1)(1+1)=96
(D) Let  α=35α1 and β=35β  where  HCF(α1,β1)=1
Now,  αβ=15!    α1β1=2113651  111131
So, no. of solutions  =25=32

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon