Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let P(x)  be a polynomial such that  x.P(x1)=(x4)P(x)xR.
 P(1)=24
Match each entry in List – I to the correct entries in List – II.

 List – I  List – II 
P)P(4)=1)0
Q)P(5)=2)12
R)P(2)2=3)60
S)P(3)=4)120
  5)24

The correct option is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

P  2, Q  1, R  3, S  2

b

P  5, Q  1, R  4, S  2

c

P  2, Q  4, R  5, S  1

d

P  5, Q  4, R  3, S  1

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 Let  P(x) be a polynomial such that  x.P(x1)=(x4)P(x)xR.
Find all such  P(x).
Put  x=0,04P(0)
    P(0)=0
Put  x=1,1.P(0)=3P(1)
    P(1)=0
Put  x=2,2.P(1)=2P(2)
    P(2)=0
Put x=3,3.P(2)=P(3)
    P(3)=0
Let us assume  P(x)=x(x1)(x2)(x3)Q(x), where  Q(x)  is some polynomial.
Now using given relation we have
 x(x1)(x2)(x3)Q(x1)=x(x1)(x2)(x3)Q(x)
    Q(x1)=Q(x)xR{0,1,2,3,4}
    Q(x1)=Q(x)xR(From identity theorem)
    Q(x) is periodic
    Q(x)=c
   P(x)=cx(x1)(x2)(x3)

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let P(x)  be a polynomial such that  x.P(x−1)=(x−4)P(x)∀x∈R. P(−1)=24Match each entry in List – I to the correct entries in List – II. List – I  List – II P)P(4)=1)0Q)P(5)=2)12R)P(−2)2=3)60S)P(3)=4)120  5)24The correct option is