Q.

Let Q be the cube with the set of vertices {(x1,x2,x3)R3:x1,x2,x3{0,1}}. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices (0,0,0) and (1,1,1) is in S .For lines l1 and l2, let d(l1,l2) denote the shortest distance between them. Then the maximum value of d(l1,l2), as l1 varies over F and  l2 varies over S, is greater than or equal to 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

12

b

18

c

112

d

16

answer is A, B, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

DR’s of  OG=(1,1,1)
DR’s of  AC=(1,1,0)
Equation of  OG=x1=y1=z1
Equation of AC=x11=y1=z0
 OA=i^

Question Image

 

 

 

 

 

 

 

Normal of OG and AC

=|i^j^k^111110|=(i^j^+2k^)

S.D.=|i^(i^j^+2k^)||i^j^+2k^|=16

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let Q be the cube with the set of vertices {(x1,x2,x3)∈R3:x1,x2,x3∈{0,1}}. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices (0,0,0) and (1,1,1) is in S .For lines l1 and l2, let d(l1,l2) denote the shortest distance between them. Then the maximum value of d(l1,l2), as l1 varies over F and  l2 varies over S, is greater than or equal to