Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  α,β,γR  such that  cos(αβ)+cos(βγ)+cos(γα)=32

Then match Column – I with  Column – II 

 Column – I  Column – II
Asin(α+β)=cos(α+β)=p0
Bsin3α=q3sin(α+β+γ)
Ccos3α=r3cos(α+β+γ)
DIf  θR , then  cos3(θ+α)Πcos(θ+α)=s3

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

A-s; B-p; C-r; D-q

b

A-p; B-q; C-r; D-s

c

A-q; B-s; C-p; D-r 

d

A-q; B-r; C-s; D-p

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 cos(αβ)+cos(βγ)+cos(γα)=3/2
 3+2(cosαcosβ+cosβcosγ+cosγcosα+sinαsinβ+sinβsinγ+sinγsinα)=0
 (cosα+cosβ+cosγ)2+(sinα+sinβ+sinγ)2=0
               cosα+cosβ+cosγ=0                    ……………… (1)
 sinα+sinβ+sinγ=0                               ………………. (2)
              bc+ca+ab=0cis(α+β)+cis(β+γ)+cis(γ+α)=0a=cisα,b=cisβ,c=cisγ,          a+b+c=0  and  1a+1b+1c=0  (by (1) & (2))
               bc+ca+ab=0cis(α+β)+cis(β+γ)+cis(γ+α)=0
And  sin(α+β)+sin(β+γ)+sin(γ+α)=0
                      sin(α+β)=cos(α+β)=0         (A)P
We have  a+b+c=0a3+b3+c3=3abccis3α=3cis(α+β+γ)
By compare imaginary part  cos3α=3cos(α+β+γ)                Bq  and  cr
 θR,cos3(θ+π)πcos(θ+α)=3πcos(θ+α)πcos(θ+α)=3

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring