Q.

Let S be the circle in the xy-plane defined by the equation  x2+y2=4. Let E1E2 and F1F2 be the chord of S passing through the point P0(1,1) and parallel to the x-axis and the y-axis, respectively. Let G1G2 be the chord of S passing through P0 and having slope -1. Let the tangents to S at E1 and E2 meet at  E3, the tangents of S at F1 and F2 meet at F3, and the tangents to S at G1 and G2 meet at  G3. Then, the points E3, F3 and G3 lie on the curve

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

xy=4

b

x+y=4

c

(x4)(y4)=4

d

(x4)2+(y4)2=16

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail
Question Image

Co-ordinates of E1  and E2 are obtained bysolving y=1 and x2+y2=4
E1(3,1) and  E2(3,1)
Co-ordinates of  F1 and F2 are obtained by solving
x=1  and  x2+y2=4

F1(1,3)  and  F2(1,3)

Tangent at E1:3x+y=4
Tangent at  E2:3x+y=4
E5(0,4) 
Tangent at :  F1:x+3y=4
Tangent at  F2:x3y=4
F5(4,0)
And similarly G5(2,2)
(0,4),(4,0)  and  (2,2)  lies on  x+y=4

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let S be the circle in the xy-plane defined by the equation  x2+y2=4. Let E1E2 and F1F2 be the chord of S passing through the point P0(1,1) and parallel to the x-axis and the y-axis, respectively. Let G1G2 be the chord of S passing through P0 and having slope -1. Let the tangents to S at E1 and E2 meet at  E3, the tangents of S at F1 and F2 meet at F3, and the tangents to S at G1 and G2 meet at  G3. Then, the points E3, F3  and  G3 lie on the curve