Q.

Let S  be the set of all non-zero real numbers  α such that the quadratic equation αx2x+α=0   has two distinct real roots x1  and x2  satisfy the inequality  |x1x2|<1 which of the following interval (s) is /are a subset S?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

(12,15)

b

(15,12)

c

(15,0)

d

(0,15)

answer is A, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given x1   and  x2  are roots of αx2x+α=0 x1+x2=1α and x1x2=1   Also,  |x1x2|<1   |x1x2|2<1(x1x2)2<1   (or)   (x1+x2)24x1x2<1 1α24<1 1α2<5 5α21>0 (5α1)(5α+1)>0 α(,15)(15,)              .....(1)  Also  D>0 b24ac>0 14α2>0 α(12,12)               .....(2)  From Eqns. (1) & (2), we get   α(12,15)(15,12)

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let S  be the set of all non-zero real numbers  α such that the quadratic equation αx2−x+α=0   has two distinct real roots x1  and x2  satisfy the inequality  |x1−x2|<1 which of the following interval (s) is /are a subset S?