Q.

Let S be the set of all (α, β), π<α, β<2π, for which the complex number 1isinα1+2isinα is purely imaginary and 1+icosβ12icosβ is purely real. Let Zαβ=sin2α+icos2β, (α, β)S.

Then (α, β)SiZαβ+1iZ¯αβ is equal to :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

1

b

2 - i

c

3

d

3 i

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

π<α, β<2π1isinα1+i(2sinα)= Purely imaginary (1isinα)(1i(2sinα))1+4sin2α= Purely imaginary 12sin2α1+4sin2α=0sin2α=12α=5π4, 7π4& 1+icosβ1+i(2cosβ)= Purely real (1+icosβ)(1+2icosβ)1+4cos2β= Purely real 3cosβ=0β=3π2Zαβ=sin5π2+icos3π=1i

or

Zαβ=sin7π2+icos3π=1i Required value =i(1i)+1i(1+i)+i(1i)+1i(1+i)=i(2i)+1i2i(2)21=1

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon