Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

Let S be the set of all (α, β), π<α, β<2π, for which the complex number 1isinα1+2isinα is purely imaginary and 1+icosβ12icosβ is purely real. Let Zαβ=sin2α+icos2β, (α, β)S.

Then (α, β)SiZαβ+1iZ¯αβ is equal to :

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

1

b

2 - i

c

3

d

3 i

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

π<α, β<2π1isinα1+i(2sinα)= Purely imaginary (1isinα)(1i(2sinα))1+4sin2α= Purely imaginary 12sin2α1+4sin2α=0sin2α=12α=5π4, 7π4& 1+icosβ1+i(2cosβ)= Purely real (1+icosβ)(1+2icosβ)1+4cos2β= Purely real 3cosβ=0β=3π2Zαβ=sin5π2+icos3π=1i

or

Zαβ=sin7π2+icos3π=1i Required value =i(1i)+1i(1+i)+i(1i)+1i(1+i)=i(2i)+1i2i(2)21=1

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon