Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  S1x2+y24x8y+4=0 and S2  be its image in the line  y=x. The radius of the circle
touching y=x  at (1,1) and orthogonal to S2  is 3λ,  then  λ2+2=

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 6.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

centre of circle  S1=(2,4)
centre of circle  S2=(4,2)
Radius of circle S1=  radius of circle  S2=4
  equation of circles S2
(x4)2+(y2)2=16 
 x2+y28x4y+4=0....(i)
Equation of circle touching y=x  at (1,1)  can be taken as 
 (x1)2+(y1)2+λ(xy)=0
Or,  x2+y2+x(λ2)+y(-λ2)+2=0....(ii)
this is orthogonal to  S2, Hence use orthogonal condition to find  λ

2λ22(4)+2λ22(2)=4+2

4λ+8+2λ+4=6

Equation of required circle is 

x2+y2+x5y+2=0

 Radius =14+2542=2684=184=322

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring