Q.

Let  S1x2+y24x8y+4=0 and S2  be its image in the line  y=x. The radius of the circle
touching y=x  at (1,1) and orthogonal to S2  is 3λ,  then  λ2+2=

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 6.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

centre of circle  S1=(2,4)
centre of circle  S2=(4,2)
Radius of circle S1=  radius of circle  S2=4
  equation of circles S2
(x4)2+(y2)2=16 
 x2+y28x4y+4=0....(i)
Equation of circle touching y=x  at (1,1)  can be taken as 
 (x1)2+(y1)2+λ(xy)=0
Or,  x2+y2+x(λ2)+y(-λ2)+2=0....(ii)
this is orthogonal to  S2, Hence use orthogonal condition to find  λ

2λ22(4)+2λ22(2)=4+2

4λ+8+2λ+4=6

Equation of required circle is 

x2+y2+x5y+2=0

 Radius =14+2542=2684=184=322

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon