Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let Sk,k=1,2,.100 ,denote the sum of the infinite geometric series whose first  term is  k1k! and the common ratio is  1k. Then the value of  1002100!+k=1100|(k23k+1)Sk|  is......... (k!=k(k1)(k2)....3×2×1)

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Sk=k1k!11k=1(k1)!, for k>1

k=2100(k23k+1)1(k1)! =k=2100|(k1)2k(k1)!| =k=2100|k1(k2)!k(k1)!| =|10!21!|+|21!32!|+|32!43!|+ =21!10!+21!32!+32!43!++9998!10099! =1+21!10099! =310099!

Hence the value of 1002100!+k=1100|(k23k+1)Sk|

=10099!+310099!=3

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon