Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let the ABC forms a triangle having A(3, 1) as one vertex, x  4y + 10 = 0 and 6x + 10y  59= 0 are the equations of an angle bisector and a median respectively drawn from different vertices then

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

vertex B is (72,8)

b

vertex C is (10,5)

c

vertex C is (10,8)

d

vertex B is (72,8)

answer is A, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Question Image

Let the vertices of ABC be A(3, 1), B(x1, y1) and C(x2, y2).
Let the equation of the median through vertex B be 6x + 10y 59=0

and the bisector of C be x 3y + 10 = 0

Since, C(x2, y2) lies on x 4y + 10 = 0 and Ex2+32,y212  lies on 6x + 10y  59 = 0

x24y2+10=0 and 3x2+9+5y2559=0

x24y2+10=0 and 3x2+5y255=0

x2=10,y2=5

So, the coordinates of C are (10, 5).
The equation of AC is y+1=5+1103(x3) or, 6x  7y = 25

Let the slope of BC be m. Then, its equation is   y 5 = m(x10) ... (i)

Since BC and AC are equally inclined to x  4y + 10 = 0 i.e., the angle bisector. Therefore,14m14+m=67141+67×1414m4+m=173429

Substituting the value of m in (i), we obtain that the equation of BC is 2x + 9y = 65.
Since B(x1, y1) lies on BC and the median through B i.e., 6x + 10y 59 = 0. Therefore,
2x1 + 9y1 = 65 and 6 x1+10 y159=0

x1=72,y1=8

So, the coordinates of B are 72,8 and so the equation of A is

y+1=8+1723(x3), or 18x+13y=41

 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon