Q.

Let the solution curve y=y(x) of the differential equation dydx3x5tan1(x3)(1+x6)3/2y=2x expx3tan1x3(1+x6)  pass through the origin. Then y1 is equal to:

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

exp(1π42)

b

exp(4+π42)

c

exp(π442)

d

exp(4π42)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

IF = e3x5tan1(x3)(1+X6)3/2dx=et.tan t1+tan2tdt=e-t sin t dt

=et cos t-sin t=et-tan tsec t=etan1x3x31+x6

y.e(x3tan1x3)1+x6=2x.e(x3tan1x3)1+x6e(x3tan1x3)1+x6dx

y.e(x3tan1x3)1+x6=2xdx+c

yetan1x3x31+x6=x2+c

x=0,y=0c=0

y(1)etan1(1)12=1

y(1)eπ412=1
y(1)=e4π42

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon