Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let the solution curve y=y(x) of the differential equation dydx3x5tan1(x3)(1+x6)3/2y=2x expx3tan1x3(1+x6)  pass through the origin. Then y1 is equal to:

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

exp(1π42)

b

exp(4+π42)

c

exp(π442)

d

exp(4π42)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

IF = e3x5tan1(x3)(1+X6)3/2dx=et.tan t1+tan2tdt=e-t sin t dt

=et cos t-sin t=et-tan tsec t=etan1x3x31+x6

y.e(x3tan1x3)1+x6=2x.e(x3tan1x3)1+x6e(x3tan1x3)1+x6dx

y.e(x3tan1x3)1+x6=2xdx+c

yetan1x3x31+x6=x2+c

x=0,y=0c=0

y(1)etan1(1)12=1

y(1)eπ412=1
y(1)=e4π42

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring