Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let there exists a matrix B such that  ABAT=N, where A=120210001 and N is a diagonal matrix of form  N=diag(n1,n2,n3) where n1,n2,n3 are three values of n satisfying the equation  |AnI|=0,n1<n2<n3.Trace of matrix A20 is equal to 320+k,then  k+n1+n2+n3=?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 5.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

|AnI|=0|1n         2            0    2           1n       0     0              0       1n|=(1n)34(1n) n=1,1,n1=1,n2=1,n3=3 A33A2+3I=O |A||B||A|T=|N|=n1n2n3=3=|A|2|B| |B|=13 A=[1  0  00  1  00  0  1]+[0  2  02  0  00  0  0]=I+B B2=4|1  0  00  1  00  0  0|,B3=8|0  1  01  0  00  0  0| Tr(Ak)=3+2(C2   k22+C4   k24+C6   k26+........) =1+2(C0   kC2   k22+C4   k24+........)=1+3k+(1)k

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon