Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9
Banner 10

Q.

Let v¯=αi^+2j^3k^,w¯=2αi^+j^k^  and  u¯  be a vector such that |u^|=a>0 . If the minimum value of the scalar triple product [u¯  v¯  w¯]   is α3401   and |u¯i^|2=mn  , where m and n are coprime natural numbers, then  is equal to ________

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 3501.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We have  v=αi^+2j^3k^,w=2αi^+j^k^|u^|=α
Now,  [uvw=u.(v×w)]=|u||v×w|cosθ=α|v×w|cosθ
For minimum value of  [uvw],θ=π
[uvw]min=α[v×w]  |v×w|=3401  
Now,  v×w=|i     j      kα    2   32α  1   1| =i5αj3αk 
Now,   |v×w|=3401  α=10     [α>0]  v×w=i50j30k
 
Again,   u=10(v×w|v×w|)  =103401(i50j30k)
Now,  |u.i|2=(103401)2=1003401  m=100,n=3401
 . So,   m+n=3501
 

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon